

KENDRIYA VIDYALAYA SANGATHAN, CHENNAI REGION

Class-XII

Common Pre-Board Examination

Physics(Theory)-Marking Scheme

1. Potentiometer because it has infinite resistance. ie, it does not	draw any
current from the cell at null point	(1)
2. As $r = \frac{mv}{qB} = \frac{p}{qB}$	
r $\alpha $ p (as q and $$ B are have same values for both the particles	(1/2)
Thus $r_e : r_p = 1:1$	(1/2)
3. Short wave band means higher frequency of transmission. High	er the
frequency longer is the distance	(1)
4. No influence	(1)
5. No	(1/2)
Energy depends on amplitude and frequency and not on speed	(1/2)
6. (a) Since Q = CV, It doubles	(1/2)
(b) Since $U_E = \frac{1}{2} CV^2$, it quadruples	(1/2)
7. Correct diagram	(1)
8. (a) Which draw I_{rms} = 10A, costs more to operate as it consumes	more
power. Since I _{rms} for 12A is $\frac{12}{\sqrt{2}}$ = 8.5 A.	(1)
9. K.E = $h \Upsilon - h \Upsilon_0$	(1)
(i) Correct definition	(1/2)
(ii) Correct definition	(1/2)
10.Refer NCERT text book Vol – II Page No.322 fig b & c	(1 + 1)
11. Definition	(1)
Energy stored in the Inductor $u = \frac{1}{2} Ll^2$	(1)
12.Let x be the capacitance of each capacitors.	
In series $\frac{1}{c} = \frac{1}{x} + \frac{1}{x} + \dots + n$ (terms)	(1)
$\frac{1}{c} = n. \ \frac{1}{x} x = nc$	
In parallel v-ne + ne +	

In parallel y=ne + nc + ------ +n (terms) = $n^{2}c$

(1)

-2-

nelp.com
13.Power due to the force
$$p = \overrightarrow{F} \cdot \overrightarrow{V}$$
 (1/2)
 $p = F.V. \cos 90^{0}$ (1/2)
 $= 0$ (1)
(or)

$$\lambda = \frac{h}{\sqrt{2mev}} \text{ (with proper substitution of values)}$$
(1)
$$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{4m_p V2}{m_p V1}} = \sqrt{8} = \frac{2\sqrt{2}}{1}$$
(1)

$$14.r^{1} = \left(\frac{E-V}{V}\right)R = \left(\frac{1.5-1.4}{1.4}\right)8.5$$
(1½)

$$r^{1} = 0.61 \,\Omega$$
 (1/2)

$$r=2 r^{1} = 2 \times 0.61 = 1.22 \,\Omega \tag{1/2}$$

15.

16.Current gain β = 25	(1)
Voltage gain $A_v = \beta \frac{R_L}{R_i}$	
$R_L = 6k'\Omega$	(1)
17.	

Binding energy per nucleon of $_{1}H^{2} = 1.1 \text{ MeV}$ Total B.E of two $_{1}H^{2} = 2.2 \text{ MeV}$ Total B.E of two deutron nuclei = 2 x 2.2 = 4.4 MeV (1) B.E per nucleon of $_{2}\text{He}^{4} = 7\text{MeV}$ Total B.E. of helium $_{2}\text{He}^{4} = 4 \text{ x } 7 = 28 \text{ MeV}$ (1) Energy released in fission = 28 - 4.4 = 23.6 MeV (1)

(1)

-3-

18.For the objective

$$\frac{1}{f_0} = \frac{1}{v_0} - \frac{1}{u_0} \tag{1/2}$$

$$v_0 = 7.2 \text{ cm}$$
 (1/2)

for the eyepiece

$$\frac{1}{f_e} = \frac{1}{v_e} - \frac{1}{u_e}$$
(1/2)

$$u_e = 2.27 \ cm$$
 (1/2)

Separation between objective and the eyepiece = V_0 + (u_e) = 9.47 cm

$$M.P = \frac{v_o}{u_o} \left[1 + \frac{D}{f_e} \right] = 88$$
(1)

19.For correct definition(1)

Atomic number of D, Z = 72
$$(1 \frac{1}{2})$$

20.For Correct Definition (1)

$$\mu = \frac{A_m}{A_c} \tag{1}$$

$$\frac{a-b}{a+b} \tag{1}$$

μ=

For Correct diagram (1)

$$\frac{E_1}{E_2} = \frac{l_1}{l_2}$$
(1)

22.

For correct Principle	(1)
For Correct diagram	(1)
Working	(1)

23. The rays will emerge out of the face ac for which i < C where C is the critical angle (1/2)

(1 ½)

a	_ 1
μg	_ sinc

here i=45 ⁰	${}^{a}\mu_{g} = \sqrt{2} = 1.41$	(1/2)
Thus the con	dition is ^a µ _{g < 1.41}	

only Red Ra	y will emerge out.	(1/2)

24. (a) Magnetic field \vec{B} must oscillate along

 \widehat{K} ie (Z – axis) because $\widehat{i} = (\widehat{j} \times \widehat{k})$ (1 ½)

- (b) $\frac{E_0}{B_0}$ = c (speed of light in vacuum) (1 ½)
- 25. Biot savart's law (1)
 - Diagram(1/2)For correct derivation(1 ½)(a) Electrometric induction(1)
- 26. (a) Electromagnetic Induction(1)(b)No. Because refrigerator is a heat liberating agent(1)
 - (i) Creating awareness, presence of mind covrage (1)

(1/2)

Phasor diagram	(1/2)
For derivation of Impedance	(2)

		(1)
	Resonance in the circuit	(1)
	(or)	
	For correct labelled diagram	(1)
	Principle	(1)
	Construction	(1)
	Workings	(2)
28.	Assumptions	(1/2)
	Sign conventions	(1)
	Diagram	(1/2)
	Correct derivation and lens maker's formul	a (3)

(or)

Correct answers of wave front and ray		(1/2)
(i)	Correct diagram	(1/2)
(ii)	Correct diagram	(1/2)
	Principle	(1)
	Diagram	(1)
	For proving	(1 ½)

29.(a) Correct circuit diagram	(2)
Input wave form	(1/2)
Output wave form	(1/2)
$\beta = \frac{\Delta I_c}{\Delta I_B}, \qquad I_E = I_B + I_C$	
$I_c = \beta I_b$	
$_{\rm IB} = \frac{IE}{1+\beta} = 0.1 \text{ mA}$	(1)

$$Ic = 59 \times 0.1 = 5.9 \text{ mA}$$
 (1)

(or)

(a) Correct diagram

Metals	(1)
Insulators	(1)
Semiconductors	(1)
b) Correct answer	(1)
No it cannot detect	(1)
[hY has to be greater than E_g]	